# Lecture 1

1). For SU(N) with the normalization  $\int dg 1 = 1$ , evaluate the integrals

$$\int dg \operatorname{Tr} g = 0$$

$$\int dg (\operatorname{Tr} g)^2 = \delta_{N,2}$$

$$\int dg (\operatorname{Tr} g)^3 = \delta_{N,3}$$

$$\int dg |\operatorname{Tr} g|^2 = 1.$$

These follow from combining representations. For example, in SU(3) we have  $3 \otimes \overline{3} = 1 \oplus 8$  and  $3 \otimes 3 \otimes 3 = 1 \oplus 8 \oplus 8 \oplus 10$ .

- 2). Show in pure gauge theory that forgetting to integrate over a single arbitrary link leaves all gauge invariant expectations unchanged.
- 3). In  $\mathbb{Z}_2$  lattice gauge theory where all links are plus or minus one, find a configuration where every plaquette is negative.

A:

$$U_x = 1$$

$$U_y = (-1)^x$$

$$U_z = (-1)^{x+y}$$

$$U_t = (-1)^{x+y+z}$$

4). In two dimensional  $Z_2$  pure gauge theory, find an explicit expression for the average plaquette as a function of beta.

A:

$$Z = \text{Tr}T^{N}$$

$$T = \begin{pmatrix} e^{\beta} & e^{-\beta} \\ e^{-\beta} & e^{\beta} \end{pmatrix}$$

Eigenvalues

$$\lambda = e^{\beta} \pm e^{-\beta}$$
 
$$Z = \lambda_{+}^{N} + \lambda_{-}^{N} \to \lambda_{+}^{N}$$
 
$$P = \frac{1}{N} \frac{d \log(Z)}{d\beta} = \tanh(\beta)$$

5). A Wilson loop is defined as the expectation value for the trace of a product of link variables around a closed loop. Show that in strong coupling for the pure gauge theory these loops fall exponentially with increasing minimal area enclosed by the loop. Should this rapid fall-off persist when quarks are present?

A: Use

$$\int dgg = 0$$

along with

$$\int dg g_{ij} g^{\dagger}{}_{kl} = \delta_{il} \delta_{jk} / N$$

to find  $L \sim \beta^A \sim e^{-A \log(\beta)}$ 

## Lecture 2

1). In the SU(2) linear sigma model with degenerate quarks, show that the pion mass is indeed proportional to the square root of the quark mass.

A:

$$V = (\sigma^2 + \pi^2 - v^2)^2 - m\sigma$$

Minimum at

$$0 = 4\sigma(\sigma^2 + \pi^2 - v^2) - m$$

Pion mass

$$M_{\pi}^2 \sim \frac{\partial V}{\partial \pi^2} = 2(\sigma^2 + \pi^2 - v^2) \sim m/2\sigma \sim m/2v$$

- 2). Argue that in a gauge theory, changing the sign of the fermion mass in a fermion loop involving more than three interactions leaves the contribution unchanged. How can this argument fail for a triangle diagram.
- 3). For  $g \in SU(N)$  find the locations and values of the maxima and minima of Re Tr g. Are there local maxima or minima that are not global? Are there saddle points?

A:

$$\frac{d}{d\epsilon} (e^{i\epsilon \cdot \lambda} g + g^{\dagger} e^{-i\epsilon \cdot \lambda})|_{\epsilon=0} = 0$$

implies  $\operatorname{Im}\operatorname{Tr}\lambda g=\operatorname{const.}$  Diagonalizing g says all eigenvalues of the form  $e^{i\theta}$  or  $-e^{-i\theta}$ . Now to second order in  $\epsilon$  with diagonal generators, max or min requires all to be one or the other. Thus extrema are elements of  $Z_N$ . For N>4 there are multiple local maxima. For a saddle point in SU(3),

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Thanks to Sidney Coleman for this argument.

- 4). For the three flavor non-linear sigma model, show that the charged and neutral pion mass difference is quadratic in the up-down quark mass difference. How does this work in the two flavor case?
  - A: Result must be even in this difference, but in more detail

$$\Sigma = e^{i\pi \cdot \lambda}$$

$$V = \text{ReTr}\Sigma m$$

Expanding gives the meson mass matrix.

$$m = \operatorname{diag}(m_u, m_d, m_s)$$

If  $m_u \neq m_d$ ,  $\text{Tr}\lambda_3\lambda_8 m$  gives a  $\pi_0$ ,  $\eta$  mixing proportional to  $m_u - m_d$ . Diagonalizing the meson matrix moves the  $\pi_0$  down proportional to this mixing squared.

### Lecture 3

- 1). Show that the Wilson Dirac operator is not normal; i.e. D and  $D^{\dagger}$  do not commute. What about the Karsten-Wilczek, overlap, and staggered operators?
- 2). What is the motivation for using antiperiodic periodic conditions with fermions on a finite lattice?
- A: For finite temperature, we want loops around the timelike direction to give a positive contribution.
- 3). Show that for arbitrary gauge fields the naive fermion matrix can be block diagonalized into four independent factors.
- A: In any loop any particular  $\gamma_{\mu}$  appears an even number of times. Thus on any site, any spinor component doesn't know about any of the others.
- 4). Consider a spinless fermions hopping on a lattice with the gauge group SU(2). Show that the theory at negative  $\beta$  is equivalent to conventional staggered fermions.
  - A: Absorb the staggered factors into the group integrations.

#### Lecture 4

1). In the SU(3) non-linear sigma model, show that the Dashen phase starts at

$$m_u = \frac{-m_d m_s}{m_d + m_s}$$

A: The meson mass matrix is

$$\mathcal{M}_{\alpha\beta} \propto \text{Re Tr } \lambda_{\alpha}\lambda_{\beta}M$$

The neutral pion and eta mix

$$\mathcal{M}_{3.8} \propto m_u - m_d$$

Diagonalizing the mass matrix gives

$$m_{\pi_0}^2 \propto \frac{2}{3} \left( m_u + m_d + m_s - \sqrt{m_u^2 + m_d^2 + m_s^2 - m_u m_d - m_u m_s - m_d m_s} \right)$$

The Dashen phase starts where this vanishes.

- 2). The strong CP phase is the phase of the determinant of the mass matrix. Can we rotate  $\Theta$  into the top quark mass? If we do so, how can it be relevant to low energy physics?
- 3). The axion solution to the strong CP problem makes the phase of the mass matrix into a dynamical field that relaxes to zero. Show that the anomaly feeds through to give the axion a mass proportional to the trace of the light quark mass matrix. How do the heavy quarks (c,b,t) affect this?

A: Ignoring lots of factors,

$$L_{acd} \sim FF + \overline{\psi}D\psi + \text{ReTr}m\Sigma + c\text{Re}|\Sigma|$$

Here

$$\Sigma_{ab} = \overline{\psi}_a \psi_b$$

and m is the mass matrix. Chiral symmetry breaking gives  $\Sigma$  its vacuum expectation value, and fluctuations around this are the meson fields

$$\Sigma \sim \exp(i\pi \cdot \lambda + i\eta')$$

The 't Hooft determinant term gives a mass independent contribution to the eta prime mass.

Add an axion field a(x) to remove the phase of the mass matrix

$$m \to m e^{i\xi a(x)}$$

Here the parameter  $\xi$  controls the coupling of the axion; it should be small so the axion won't have yet been discovered. Expanding  $V = \text{ReTr} m\Sigma + \text{Re}|\Sigma|$  about vanishing meson fields gives

$$V \sim (\eta' + \xi a)^2 \text{Tr} m + {\eta'}^2$$

This gives a mass matrix mixing the eta prime and axion

$$\begin{pmatrix} \xi^2 \text{Tr} m & \xi \text{Tr} m \\ \xi \text{Tr} m & \text{Tr} m + c \end{pmatrix}$$

This has determinant  $\xi^2 c \text{Tr} m$  which should be the product of the physical eta prime and axion masses. The important observation is that a single quark mass vanishing does not give a massless axion.

Heavier quarks factor out since for them  $\langle \overline{\psi}\psi \rangle$  is dominated by their mass, not the spontaneous breaking.

# General questions

- 1). A possible gauge fixing is to set to unity all links on a tree of links containing no loops. Find a tree such that the average expectation of the unfixed links doesn't vanish.
- 2). There is much discussion of possible zeros of "the" beta function for QCD at non-vanishing coupling. Define the coupling from the force between separated quarks as obtained from Wilson loops. Argue that the beta function associated with this definition of the coupling must have a zero at some  $g \neq 0$ . Find another definition of the beta function that only has a single zero at the origin.
- 3). Because of screening by dynamical quark pairs, Wilson loops in QCD with quarks always have a perimeter law. How is confinement defined then?
- 4). The weak interactions involve the non-Abelian gauge group SU(2). Isn't this a confining theory? How can we have free electrons and W bosons?
  - 5). What does it mean for a particle to be "elementary"?